总排口CEMS烟气在线分析系统
河源2024-06-23 06:02:51
7 次浏览小百姓0911191244665
联系人:郭堃***********
《污染源在线自动监控(监测)系统数据传输标准》HJ212-2017
《固定污染源排气中颗粒物测定与气态污染物采样方法》GB/T16157
采用紫外差分技术测量SO2、NO不受水蒸气等其它干扰气体影响;
测量结果不受光源能量波动、衰减影响;
测量原理保证了仪器零点基本无漂移;
采用德国原装进口冷凝器,经过独特的加磷酸技术,避免了SO2的损失;
采用PLC控制,自动化程度高、维护工作量小;
系统模块化结构设计,配置灵活;
系统抗干扰性能强;
系统操作简单维护方便;
系统测量精度高;
系统数据采集精度高;
监测下限低,适用于超低排放气态污染物在线监测。
烟气超低在线监测系统CEMS
烟气排放连续监测系统是安荣信科技为了满足我国日益严格的固定污染源烟气监测要求,基于自身在环境监测领域的丰富经验,推出的可广泛应用于火力发电厂、各种工业窑炉/锅炉、石油石化、化学工业、钢铁烧结、炼钢、炼铁厂、水泥工业、砖瓦厂、垃圾焚化厂等场合的烟气超低排放连续监测系统 。
系统组成:
CEMS系统由气态污染物监测子系统、颗粒物监测子系统、烟气参数监测子系统及数据采集与处理子系统组成,其中气态污染物监测子系统和数据采集与处理子系统安装在标准19英寸机柜内。
CEMS系统概述
火电厂在燃烧煤炭时所排放出的烟气污染物中含粉尘、二氧化硫、氮氧化物,而 CEMS 系统可以根据上述污染物排放浓度和总量连续不断地进行全天24小时的监测。迄今为止,在超低排放政资实施的大背景下,社会上的绝大多数火电厂正在加速内部超低排放系统的构建,而烟气在线监测 CEMS 系统在其中是不可缺少的一项专用设备。
二、应用与研究
1、对冷干直抽法 CEMS 的研究
典型的冷干直抽法取样和预处理部分包括取样探头、取样伴热管线、过滤、 系统和取样泵等部分,其目的是给分析仪器提供连续的洁净(除尘)、干燥( )、常温样气,确保分析仪长期连续稳定、准确可靠、少维护地协调运行,并延长其使用寿命。而作为火电厂超低排放监测系统冷干直抽法 CEMS 系统的主要作用是把烟气中的水蒸气给去除。现阶段普遍使用的是冷却 法,冷却 法需要在很短的时间内将水蒸气冷凝,从而避免烟气和冷凝水接触(但它的机理造成了冷凝水和 SO2 必然发生接触)。为l防止冷凝水结冰,其冷凝的温度一般来说维持在 3~5℃即可,冷却 法的主要形式为电子制冷和压缩机制冷。冷干直抽法 CEMS 预处理系统的 主要的一个目的就是 。烟气在冷凝时会有冷凝水产生(普通热电厂的水含量为 8~15%)。但如果伴热管线加热效果下降,有冷凝水析出,或冷凝器制冷效果不好,样气中的水份未被分离而析出;或冷却仪的冷凝水蟠动泵管老化,致使冷凝水未能及时排出而被样气携带进入后续管道或仪器:另外在低温度比较低的情况下(冷凝器中),SO2 的溶解度升高,低量程的 SO2 会溶解入冷凝水而造成监测分析的数据变小,甚至为零。
2、 应用改进
面对在高湿、低量程必定 发生二氧化硫溶入冷凝水的问题,目前为止存在两种方法可以规避或控制:(1)加注磷酸法,源自德国的烟气在线监测预处理系统,供应商考虑采用在整个伴热管线或在冷凝器中加注磷俊的方法来控制 ,NO<1000mg/Nm及 SO2<900mg/Nm 范围内二氧化硫在冷凝水中的溶解问题。机理是通过磷酸在水中电离出的 H离子,阻止 SO2 与水发生化学反应进而生成 HSO2, 大程度确保只有 少量的 二氧化硫落入冷凝水中。2Nafion 干燥管 法,通过 Nafion 膜选择性气态 的方式来从根本上解决冷凝水析出的问题,并且保留烟气中低量程的 SO2、NOX和 O2,有效确保分析的精确度和准确率。由于 Nafion干燥管没有机械运动部件,气态 且无冷凝水析出,因而与冷凝器相比具有明显的优势。
超低排放是指锅炉尾部经环保治理后,在6%含氧量情况下,相关气态污染物排放浓度实现:NOx≤50mg/m3、S02≤35mg/m3、烟尘≤10mg/m3。许多燃煤锅炉经环保升级改造后,尾部烟气中相关气态污染物已满足超低排放要求,但原有CEMS系统仍继续保留使用。为适应日趋严格的环保要求,近年来众多燃煤锅炉积极开展环保升级改造,实现锅炉尾部烟气中烟尘、SO2、NOx等气态污染物“超低排放”。文章通过对比几种应用于二氧化硫、氮氧化物和烟尘的典型监测技术,提出了适用于超低排放改造的烟气在线监测系统优化配置方案。
几种烟气在线监测技术的性能比较
国内火电厂烟气在线监测产品众多,本文结合各种产品的运行情况,参考了拥有该种技术典型品牌产品的说明书,对超低排放较为关注的量程、精度等重要指标参数进行对比。其中 小量程指的是 小物理量程,而非软件迁移的量程。
1.SO2和NOX监测技术的比较
根据《固定污染源烟气(SO2、NOX、颗粒物)排放连续监测系统技术要求及检测方法》(HJ/T76),按超低排放限值计算,SO2和NOX量程应不大于175mg/m3和250mg/m3。非分散紫外吸收/差分法分析仪的 小量程满足HI/T76标准要求,但CEMS系统的整体性能不但与分析仪本身性能有关,还受烟气预处理系统性能的影响。
2.烟尘监测技术的比较
在火电厂超低排放改造中,烟尘浓度一般要达到10mg/m3以下。尤其以湿式除尘改造为主要技术路线的烟气中水分含量较大,给烟尘的准确监测带来挑战。β射线法技术量程低,可达到低浓度烟尘监测的精度要求,但其成套价格较高,且β射线装置属于放射源,国家辐射管理部门对其销售、运输、使用过程、报废等都有严格的监管,不便于应用推广,所以其在CEMS上应用也较少。在实际应用中一般是将烟气等速抽取,经升温加热使水分雾化不出现液滴,再通过光散射等低浓度测量方法进行测量;另一种是将烟气等速抽取,将加热干燥的空气与其按一定比例混合稀释,从而降低烟气中的水分含量,再通过光散射等低浓度测量方法进行测量,结合混合气体的稀释比计算出烟尘浓度。这种方式采用低浓度测量原理,优化了烟气采样和预处理,有效解决目前超低排放改造中高湿低浓度烟尘在线监测的问题,在湿式除尘后已有广泛应用。
3.烟气预处理技术的比较
火电厂实施超低排放改造后,烟气污染物浓度大幅降低,在线监测的适应性取决于系统的检出下限,而CEMS的检出下限受分析仪本体和烟气预处理装置两部分制约。在实际应用的烟气预处理中,直接抽取+冷干法占70%,均采用冷凝除水技术。该技术在冷凝过程中,冷凝水会吸收携带部分SO2和NOX,以致在超低浓度工况下的监测数据严重失真甚至无检测数据,不能满足HI/T76标准的技术要求。水分含量越高对测量结果影响越大,其中渗透膜除水技术对SO2测量的影响远小于其他除水技术,其除水效果优于其他技术。由此而知,在直抽法采用紫外吸收/差分法分析仪时,应同时选用除水效果更好的烟气预处理技术,否则监测数据可能严重失真甚至检测不出数据。在稀释法取样中,预处理侧重于对稀释气体的处理,通常配备专门的压缩空气净化装置或者发生装置,经精密过滤和干燥,可将露点降至-40℃,不需要加热采样管线。在CEMS中,稀释抽取法通常与紫外荧光和化学发光技术配套使用。
五、结束语:
综上所述,超低排放改造实施后,进出口烟气特性差异较大,烟气监测对CEMS的系统配置提出了更高、更具体的要求,建议在可研或技术规范书里明确各测点不同污染物对烟气取样方式、预处理、分析仪的测量原理、量程、检出下限等主要参数和选型的具体要求。
紫外烟气连续监测系统采用冷干完全抽取+除水除尘预处理系统,结合紫外法气体分析仪,连续在线测量烟气中的SO₂、NO、NO₂等污染气体浓度,可通过增加非分散红外模块,连续在线测量烟气中的CO₂、CH₄ 、N₂O等温室气体浓度,同时可监测烟气参数(温度、压力、流速或流量、湿度、含氧量等),通过数据采集与传输装置将监测数据上传至环境管理部门。紫外吸收法对气态污染物进行分析,避免了水和粉尘以及碳氢化合物对分析仪的干扰。
高温红外烟气排放连续监测系统,全程高温热湿抽取式采样,采用德国Födisch先进的GFC/IFC光度测定技术与简单可靠的高温样品预处理系统相结合。该系统可同时测量烟气中的SO₂、NO、NO₂、CO、HCL、HF、NH₃等污染气体浓度和CO₂、CH₄、N₂O等温室气体。全程高温采样,尤其适用于低浓度、高湿度、腐蚀性强、气体成分复杂的垃圾焚烧行业及特殊过程气体检测。
造纸
是否按小时均值判定超标:是
生产工序:碱回收炉/石灰窑炉/焚烧炉/燃煤蒸汽锅炉
非正常情况达标判定要求:
(1)启动和停机时段内的排放数据可不作为废气达标判定依据,其中碱回收炉冷启动不超过8小时,不冲洗炉膛直接启动不超过5小时,停炉时间不超过4小时;石灰窑炉冷启动不超过24小时、热启动不超过6小时;焚烧炉冷启动时间不超过4小时,热启动时间不超过2小时,停炉时间不超过1小时,每年启动、停炉(含故障)时间累积不超过60小时;
豁免因子:颗粒物、二氧化硫、氮氧化物
(2)燃煤蒸汽锅炉如采用干(半干)法脱硫、脱硝措施,冷启动不超过1小时、热启动不超过0.5小时,不作为二氧化硫和氮氧化物达标判定的时段。
豁免因子:二氧化硫、氮氧化物
烧结/球团/燃煤锅炉
是否按小时均值判定超标:是
生产工序:碱回收炉/石灰窑炉/焚烧炉/燃煤蒸汽锅炉
非正常情况达标判定要求:
(1)钢铁工业排污单位非正常排放指烧结机、球团焙烧设施、燃煤锅炉等设施启停机、设备故障、检维修等情况下的排放。
(2)钢铁工业排污单位中,对于采用脱硝措施的烧结机/球团焙烧设施,启动8小时不作为氮氧化物合规判定时段。
(3)对于采用脱硝措施的燃煤锅炉,冷启动1小时、热启动0.5小时不作为氮氧化物合规判定时段。
豁免因子:氮氧化物
联系电话:15129653023